Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Data ; 7(11):164, 2022.
Article in English | MDPI | ID: covidwho-2116079

ABSTRACT

Although various vaccines are now commercially available, they have not been able to stop the spread of COVID-19 infection completely. An excellent strategy to get safe, effective, and affordable COVID-19 treatments quickly is to repurpose drugs that are already approved for other diseases. The process of developing an accurate and standardized drug repurposing dataset requires considerable resources and expertise due to numerous commercially available drugs that could be potentially used to address the SARS-CoV-2 infection. To address this bottleneck, we created the CoviRx.org platform. CoviRx is a user-friendly interface that allows analysis and filtering of large quantities of data, which is onerous to curate manually for COVID-19 drug repurposing. Through CoviRx, the curated data have been made open source to help combat the ongoing pandemic and encourage users to submit their findings on the drugs they have evaluated, in a uniform format that can be validated and checked for integrity by authenticated volunteers. This article discusses the various features of CoviRx, its design principles, and how its functionality is independent of the data it displays. Thus, in the future, this platform can be extended to include any other disease beyond COVID-19.

2.
Viruses ; 14(11)2022 Oct 31.
Article in English | MEDLINE | ID: covidwho-2099851

ABSTRACT

The repurposing of licenced drugs for use against COVID-19 is one of the most rapid ways to develop new and alternative therapeutic options to manage the ongoing pandemic. Given circa 7817 licenced compounds available from Compounds Australia that can be screened, this paper demonstrates the utility of commercially available ex vivo/3D airway and alveolar tissue models. These models are a closer representation of in vivo studies than in vitro models, but retain the benefits of rapid in vitro screening for drug efficacy. We demonstrate that several existing drugs appear to show anti-SARS-CoV-2 activity against both SARS-CoV-2 Delta and Omicron Variants of Concern in the airway model. In particular, fluvoxamine, as well as aprepitant, everolimus, and sirolimus, has virus reduction efficacy comparable to the current standard of care (remdesivir, molnupiravir, nirmatrelvir). Whilst these results are encouraging, further testing and efficacy studies are required before clinical use can be considered.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Humans , Pandemics , Lung , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use
3.
Int J Mol Sci ; 23(19)2022 Oct 06.
Article in English | MEDLINE | ID: covidwho-2066139

ABSTRACT

SARS-CoV-2 is the cause of the COVID-19 pandemic which has claimed more than 6.5 million lives worldwide, devastating the economy and overwhelming healthcare systems globally. The development of new drug molecules and vaccines has played a critical role in managing the pandemic; however, new variants of concern still pose a significant threat as the current vaccines cannot prevent all infections. This situation calls for the collaboration of biomedical scientists and healthcare workers across the world. Repurposing approved drugs is an effective way of fast-tracking new treatments for recently emerged diseases. To this end, we have assembled and curated a database consisting of 7817 compounds from the Compounds Australia Open Drug collection. We developed a set of eight filters based on indicators of efficacy and safety that were applied sequentially to down-select drugs that showed promise for drug repurposing efforts against SARS-CoV-2. Considerable effort was made to evaluate approximately 14,000 assay data points for SARS-CoV-2 FDA/TGA-approved drugs and provide an average activity score for 3539 compounds. The filtering process identified 12 FDA-approved molecules with established safety profiles that have plausible mechanisms for treating COVID-19 disease. The methodology developed in our study provides a template for prioritising drug candidates that can be repurposed for the safe, efficacious, and cost-effective treatment of COVID-19, long COVID, or any other future disease. We present our database in an easy-to-use interactive interface (CoviRx that was also developed to enable the scientific community to access to the data of over 7000 potential drugs and to implement alternative prioritisation and down-selection strategies.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/complications , Drug Repositioning , Humans , Pandemics , SARS-CoV-2 , Post-Acute COVID-19 Syndrome
4.
Br J Clin Pharmacol ; 87(9): 3425-3438, 2021 09.
Article in English | MEDLINE | ID: covidwho-1494607

ABSTRACT

AIMS: We propose the use of in silico mathematical models to provide insights that optimize therapeutic interventions designed to effectively treat respiratory infection during a pandemic. A modelling and simulation framework is provided using SARS-CoV-2 as an example, considering applications for both treatment and prophylaxis. METHODS: A target cell-limited model was used to quantify the viral infection dynamics of SARS-CoV-2 in a pooled population of 105 infected patients. Parameter estimates from the resulting model were used to simulate and compare the impact of various interventions against meaningful viral load endpoints. RESULTS: Robust parameter estimates were obtained for the basic reproduction number, viral release rate and infected-cell mortality from the infection model. These estimates were informed by the largest dataset currently available for SARS-CoV-2 viral time course. The utility of this model was demonstrated using simulations, which hypothetically introduced inhibitory or stimulatory drug mechanisms at various target sites within the viral life-cycle. We show that early intervention is crucial to achieving therapeutic benefit when monotherapy is administered. In contrast, combination regimens of two or three drugs may provide improved outcomes if treatment is initiated late. The latter is relevant to SARS-CoV-2, where the period between infection and symptom onset is relatively long. CONCLUSIONS: The use of in silico models can provide viral load predictions that can rationalize therapeutic strategies against an emerging viral pathogen.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Computer Simulation , Humans , Pandemics , SARS-CoV-2/drug effects , Viral Load
5.
Br J Clin Pharmacol ; 87(9): 3385-3387, 2021 09.
Article in English | MEDLINE | ID: covidwho-1379556
6.
Br J Clin Pharmacol ; 87(9): 3388-3397, 2021 09.
Article in English | MEDLINE | ID: covidwho-1060954

ABSTRACT

During a pandemic caused by a novel pathogen (NP), drug repurposing offers the potential of a rapid treatment response via a repurposed drug (RD) while more targeted treatments are developed. Five steps of model-informed drug repurposing (MIDR) are discussed: (i) utilize RD product label and in vitro NP data to determine initial proof of potential, (ii) optimize potential posology using clinical pharmacokinetics (PK) considering both efficacy and safety, (iii) link events in the viral life cycle to RD PK, (iv) link RD PK to clinical and virologic outcomes, and optimize clinical trial design, and (v) assess RD treatment effects from trials using model-based meta-analysis. Activities which fall under these five steps are categorized into three stages: what can be accomplished prior to an NP emergence (preparatory stage), during the NP pandemic (responsive stage) and once the crisis has subsided (retrospective stage). MIDR allows for extraction of a greater amount of information from emerging data and integration of disparate data into actionable insight.


Subject(s)
Drug Repositioning , Pandemics , Research Design , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL